Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
JCI Insight ; 8(10)2023 05 22.
Article in English | MEDLINE | ID: covidwho-2294102

ABSTRACT

Viral illnesses like SARS-CoV-2 have pathologic effects on nonrespiratory organs in the absence of direct viral infection. We injected mice with cocktails of rodent equivalents of human cytokine storms resulting from SARS-CoV-2/COVID-19 or rhinovirus common cold infection. At low doses, COVID-19 cocktails induced glomerular injury and albuminuria in zinc fingers and homeoboxes 2 (Zhx2) hypomorph and Zhx2+/+ mice to mimic COVID-19-related proteinuria. Common Cold cocktail induced albuminuria selectively in Zhx2 hypomorph mice to model relapse of minimal change disease, which improved after depletion of TNF-α, soluble IL-4Rα, or IL-6. The Zhx2 hypomorph state increased cell membrane to nuclear migration of podocyte ZHX proteins in vivo (both cocktails) and lowered phosphorylated STAT6 activation (COVID-19 cocktail) in vitro. At higher doses, COVID-19 cocktails induced acute heart injury, myocarditis, pericarditis, acute liver injury, acute kidney injury, and high mortality in Zhx2+/+ mice, whereas Zhx2 hypomorph mice were relatively protected, due in part to early, asynchronous activation of STAT5 and STAT6 pathways in these organs. Dual depletion of cytokine combinations of TNF-α with IL-2, IL-13, or IL-4 in Zhx2+/+ mice reduced multiorgan injury and eliminated mortality. Using genome sequencing and CRISPR/Cas9, an insertion upstream of ZHX2 was identified as a cause of the human ZHX2 hypomorph state.


Subject(s)
COVID-19 , Common Cold , Humans , Mice , Animals , Homeodomain Proteins/genetics , Albuminuria , Tumor Necrosis Factor-alpha , Cytokine Release Syndrome , SARS-CoV-2/metabolism , Transcription Factors/genetics
2.
Cell Rep ; 41(11): 111799, 2022 12 13.
Article in English | MEDLINE | ID: covidwho-2122375

ABSTRACT

Although vaccination efforts have expanded, there are still gaps in our understanding surrounding the immune response to SARS-CoV-2. Measuring IgG Fc glycosylation provides insight into an infected individual's inflammatory state, among other functions. We set out to interrogate bulk IgG glycosylation changes from SARS-CoV-2 infection and vaccination, using plasma from mild or hospitalized COVID-19 patients, and from vaccinated individuals. Inflammatory glycans are elevated in hospitalized COVID-19 patients and increase over time, while mild patients have anti-inflammatory glycans that increase over time, including increased sialic acid correlating with RBD antibody levels. Vaccinated individuals with low RBD antibody levels and low neutralization have the same IgG glycan traits as hospitalized COVID-19 patients. In addition, a small vaccinated cohort reveals a decrease in inflammatory glycans associated with peak IgG concentrations and neutralization. This report characterizes the bulk IgG glycome associated with COVID-19 severity and vaccine responsiveness and can help guide future studies into SARS-CoV-2 protective immunity.


Subject(s)
COVID-19 , Vaccines , Humans , Antibody Formation , Glycosylation , SARS-CoV-2 , Immunoglobulin G , Antibodies, Viral
3.
Transpl Infect Dis ; : e13914, 2022 Jul 28.
Article in English | MEDLINE | ID: covidwho-1961997

ABSTRACT

BACKGROUND: The continuing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with decreased susceptibility to neutralizing antibodies is of clinical importance. Several spike mutations associated with immune escape have evolved independently in association with different variants of concern (VOCs). How and when these mutations arise is still unclear. We hypothesized that such mutations might arise in the context of persistent viral replication in immunosuppressed hosts. METHODS: Nasopharyngeal specimens were collected longitudinally from two immunosuppressed patients with persistent SARS-CoV-2 infection. Plasma was collected from these same patients late in disease course. SARS-CoV-2 whole genome sequencing was performed to assess the emergence and frequency of mutations over time. Select Spike mutations were assessed for their impact on viral entry and antibody neutralization in vitro. RESULTS: Our sequencing results revealed the intrahost emergence of spike mutations that are associated with circulating VOCs in both immunosuppressed patients (del241-243 and E484Q in one patient, and E484K in the other). These mutations decreased antibody-mediated neutralization of pseudotyped virus particles in cell culture, but also decreased efficiency of spike-mediated cell entry. CONCLUSIONS: These observations demonstrate the de novo emergence of SARS-CoV-2 spike mutations with enhanced immune evasion in immunosuppressed patients with persistent infection. These data suggest one potential mechanism for the evolution of VOCs and emphasize the importance of continued efforts to develop antiviral drugs for suppression of viral replication in hospitalized settings.

SELECTION OF CITATIONS
SEARCH DETAIL